Mostrando entradas con la etiqueta estUNA. Mostrar todas las entradas
Mostrando entradas con la etiqueta estUNA. Mostrar todas las entradas

lunes, 1 de mayo de 2017

Aventura de Regresión Lineal y el método de eliminación hacia atrás paso a paso

En esta entrada, haremos el ejercicio de regresión lineal planteado en el semestre 2012-1, cuyo trabajo práctico es igual al de este semestre (2017-1). Se hace uso del R y mi librería estUNA para construir modelos de regresión lineal mediante el método de eliminación hacia atrás. En este proceso, enfatizamos la importancia de realizar un análisis de residuos, entre otras cosas para sugerirnos posibles transformaciones de las variables con las que podamos mejorar los modelos de regresión.

jueves, 6 de abril de 2017

estUNA

¿Qué es estUNA?


estUNA es una librería en R elaborada por mí para ampliar algunas funcionalidades del lenguaje R y facilitar la elaboración de los trabajos de estadística y el estudio independiente y a distancia de las materias de probabilidades y estadística de la Universidad Nacional Abierta en general. La librería contiene funciones para agrupar datos, generar resúmenes de datos agrupados y no agrupados, varios tipos de gráficas (histogramas, tortas, boxplots), contrastes de bondad de ajuste y de independencia chi-cuadrado, análisis de regresión, entre otras. La librería se actualiza cada semestre para incluir la data del trabajo práctico.

Eventualmente será publicada en el repositorio CRAN como un paquete. Actualmente, el archivo imagen (que permite trabajar con la librería) está disponible para su descarga en https://drive.google.com/uc?export=download&id=1REoHQfTpUjphmGFv272SkKMowFnp2VeHk05ItLT9RCk.

Introducción al R

es un entorno de programación

En esta página se hará una brevísima introducción al lenguaje R como entorno de programación. Sin pretender que esto sea una guía completa, se exponen los conceptos necesarios para poder utilizar este lenguaje como complemento instruccional a los cursos de estadística y probabilidades de la Universidad Nacional Abierta.

Un entorno de programación es una aplicación que permite crear, ejecutar y depurar programas. Los programas son esencialmente secuencias de instrucciones que le indican al computador de manera muy precisa lo que este debe hacer. Estas instrucciones se especifican en algo llamado lenguaje de programación y cada lenguaje de programación tiene su "gramática" particular y sus reglas de sintaxis. R es un lenguaje de programación interpretado, lo cual quiere decir que el programador ingresa instrucciones a través de una consola y el interprete de R va procesando cada instrucción a medida que esta se ingresa y va dando la salida respectiva a cada instrucción de forma secuencial.

En vez de escribir las instrucciones una por una en la consola, podemos indicar la secuencia de instrucciones que queremos ejecutar a través de un archivo de texto (cómo los que creamos cuando usamos el bloc de notas). Esto es lo que se conoce como un script. Un script es una especie de programa que necesita siempre de un interprete para poderse ejecutar. En esta guía, aprenderemos a crear nuestros propios scripts.

martes, 19 de julio de 2016

Trabajos de Estadística (738/748, 745 y 746) Lapso 2016-1

Se ha publicado los enunciados para los trabajos prácticos de las siguientes materias: 738/748, 745 y 746. Ante todo permítanme aclararles que estos trabajos prácticos son actividades de evaluación formativa y como tal, no tienen fecha de entrega ni ponderación en la calificación final de la materia. Aún así, les recomiendo revisar los enunciados e intentar realizar las actividades que allí se piden. Los enlaces a las carpetas comprimidas con la data y los enunciados en ciberesquina se dan a continuación:

738/748
745
746

Trataré en próximas entradas de abordar las actividades contempladas en esos trabajos. Por los momentos, les recuerdo que pueden utilizar el lenguaje R para realizar las actividades ustedes mismos. En una página fija de este blog se da información para aquellos interesados en usar R. En este mismo blog he publicado video tutoriales sobre cómo instalar R y la librería estUNA así como un ejemplo del empleo de técnicas de estadística descriptiva. También encontrarán muchas entradas ilustrando distintos métodos de estadística en este programa.

Para este semestre, la data se encuentra en el siguiente data frame de estUNA: d20161

Si te gustó o te pareció útil este contenido, compártelo en las redes sociales y dale tu voto positivo en el botón "me gusta" de G+, para que otros puedan encontrar el contenido también.

lunes, 10 de noviembre de 2014

Trabajos de Estadística para el 2014-2

A continuación los enlaces para el trabajo práctico de las materias de estadística (738/748, 745 y 746) correspondientes a este semestre 2014-2:

  • 745 (Estadística General)
  • 746 (Estadística Aplicada)
  • 738/748 (Inferencia Estadística)

martes, 13 de mayo de 2014

Técnicas de visualización de datos a ser utilizadas este semestre

En este lapso académico se les pide a los estudiantes de Estadística General (745) realizar diagramas de tallo y hoja, ojivas de frecuencia y diagramas de caja como parte de las actividades prácticas del objetivo 1. En esta entrada, hablaré un poco sobre estas técnicas de visualización de datos y como se implementan en R / estUNA.

martes, 19 de noviembre de 2013

Estudio de estadística descriptiva en R /estUNA - video Tutorial

Video-tutorial sobre cómo utilizar el lenguaje R y la librería estUNA para realizar análisis exploratorio de datos como los que se piden en los trabajos prácticos de Estadística General (745):

Si te gustó o te pareció útil este contenido, compártelo en las redes sociales y dale tu voto positivo en el botón "me gusta" de G+, para que otros puedan encontrar el contenido también.

lunes, 4 de noviembre de 2013

Video tutorial sobre cómo instalar R

A continuación un breve video tutorial sobre como descargar e instalar R, usar R desde un RWeb server y descargar la librería estUNA. Para descargar el programa de instalación de R, debe navegar al sitio cran.


Si te gustó o te pareció útil este contenido, compártelo en las redes sociales y dale tu voto positivo en el botón "me gusta" de G+, para que otros puedan encontrar el contenido también.

domingo, 28 de abril de 2013

Actualización de página tutorial de estUNA

Se ha actualizado la página tutorial de estUNA.  La librería también fue actualizada para ampliar algunas funcionalidades de la instrucción test.independencia, que se usa para el objetivo 8.2 de las asignaturas 738 y 748.  A continuación un esquema del contenido de la página tutorial:

  1. Para comenzar a trabajar con la librería estUNA - enlace.
  2. Estadística descriptiva para datos univariantes no agrupados (Objetivos 1 y 2 de la 745) - enlace.
  3. Estadística descriptiva para datos univariantes agrupados (Objetivos 1 y 2 de la 745) - enlace.
  4. Gráficas de dispersión y gráficas de caja comparativas - enlace.
  5. Regresión lineal - enlace.
  6. Contrastes de bondad de ajuste chi-cuadrado - enlace.
  7. Tests de independencia chi-cuadrado - enlace.
  8. Cómo enviar la salida gráfica a archivos - enlace.

Si necesitan alguna explicación sobre otros aspectos de la librería o tienen algún comentario sobre la página tutorial, pueden enviarme un correo a jlaurentum@gmail.com o dejar un mensaje en el buzón a la derecha de esta página.

Si te gustó o te pareció útil este contenido, compártelo en las redes sociales y dale tu voto positivo en el botón "me gusta" de G+, para que otros puedan encontrar el contenido también.

lunes, 1 de abril de 2013

The Lending Club - parte III

En esta última entrada de la serie, procedemos a construir y analizar distintos modelos de regresión para descubrir cómo se determina la tasa de interés de los prestamos que se tramitan a través del Lending Club En entradas anteriores, dimos la información de contexto del problema bajo estudio (ver la primera parte) y luego realizamos un análisis exploratorio de datos (ver la segunda parte).




Primer modelo de regresión


Para comenzar, cargaremos el archivo de datos "lending_club.Rda" y la librería estUNA (el archivo tiene el mismo nombre), los cuales se supone que deben estar en el mismo directorio de trabajo. Seguidamente, nuestro script debe contener una instrucción attach para referirnos a las variables individuales del data-frame loandata de manera más sencilla.

load("estUNA")
load("lending_club.Rda")
attach(loandata)
options(width=60)
png("regresion%02d.png")

El primer modelo incluirá aquellas variables de loandata que consideramos significativas según el análisis exploratorio realizado en la entrada The Lending Club - parte II. Estas variables son:

  • Ar (Monto Requerido).
  • Fi (calificación FICO).
  • Ld (Duración del prestamo)
  • Ocl (Líneas de crédito abiertas)
  • Inq0 (Variable indicadora según sea el número de indagaciones igual a 0).
  • Lp_dc (Variable indicadora según sea el propósito del préstamo la consolidación de deudas).


Las últimas dos variables indicadoras, Inq0 y Lp_dc, no están definidas en loandata- hay que definirlas. Seguidamente se define el modelo de regresión como modelo1a y se imprime un resumen:

Lp_dc <- Lp=="debt_consolidation"
Inq0 <- Inq==0
modelo1a <- regresion.lineal(Ir~1+Ar+Fi+Ld+Inq0+Ocl+Lp_dc)
resumen(modelo1a)
--------------------------------------------------------------
Resumen de regresion lineal

  MODELO         : modelo1a 
  Marco de datos : variables globales 
  Formula        : Ir ~ 1 + Ar + Fi + Ld + Inq0 + Ocl + Lp_dc 

Estimacion de los coeficientes poblacionales

                Estimacion   Error Est. Estadistico T
[Intercepto]  7.382562e-01 8.548541e-03     86.360488
Ar            1.481033e-06 5.975320e-08     24.785830
Fi           -8.772580e-04 1.189671e-05    -73.739512
Ld60          3.201605e-02 1.081372e-03     29.606863
Inq0TRUE     -1.079905e-02 8.222849e-04    -13.132985
Ocl          -5.018680e-04 9.328141e-05     -5.380150
Lp_dcTRUE    -2.028007e-03 8.385869e-04     -2.418362
                p-valor
[Intercepto] < 2.22e-16
Ar           < 2.22e-16
Fi           < 2.22e-16
Ld60         < 2.22e-16
Inq0TRUE     < 2.22e-16
Ocl           8.138e-08
Lp_dcTRUE      0.015662

Prueba F global

  Valor F : 1342.558   gl. num: 6   gl. den : 2485 
  p-valor : < 2.22e-16 

Coeficientes de determinacion

   R^2 : 0.7642392   R^2 ajustado : 0.76367 

Residuos

  Minimo  : -0.094555 
  Mediana : -0.002316511 
  Maximo  : 0.09745238 

  Desv. estandar residual:  0.02032266 

--------------------------------------------------------------
Todas las variables independientes de este modelo son significativas (con p-valores muy por debajo de 5%). El coeficiente de determinación \(R^2\) es un poco más de 76%, lo cual no está mal. ¿Es este el mejor modelo que podemos producir? ¿Hay algún problema en el modelo de regresión? Esta última pregunta la responderemos definitivamente al hacer un análisis de residuos.

Por ahora quiero llamar su atención a la estimación del coeficiente de la variable Lp_dc, que es igual a -0,0020287. Lp_dc es una variable lógica (TRUE o FALSE), lo cual equivale a decir que es una variable categórica.  Por la forma en que está definida la variable,  Lp_dc es igual a TRUE (verdadero) cuando el propósito del préstamo es la consolidación de deudas. Como vimos en el análisis exploratorio, los prestamos solicitados para la consolidación de deudas tienen una tasa de interés más alta (en promedio) que la tasa de interés promedio global. Por lo tanto, esperaríamos que el coeficiente de esa variable fuese positivo, pero según los resultados obtenidos, ¡es negativo!

La variable Lp_dc tiene lo que se conoce como un efecto supresor en el modelo de regresión donde la variable dependiente es la tasa de interés.  Esto ocurre porque una (o posiblemente varias) de las otras variables independientes están correlacionadas con la varaible Lp_dc y con la variable Ir.   Podemos construir modelos de regresión en los cuales probamos eliminar cada una de las otras variables una por una, hasta obtener un modelo de regresión en donde el coeficiente de Lp_dc sea positivo (como debería ser).  Tras un poco de ensayo y error, se descubrió que Lp_dc tiene un efecto supresor sobre Ir en conjunto con la variable Ar.  Para probar, construimos un modelo de regresión igual al anterior, pero sin la variable Ar:

modelo1b <- regresion.lineal(Ir~1+Fi+Ld+Inq0+Ocl+Lp_dc)
resumen(modelo1b)
---------------------------------------------------------
Resumen de regresion lineal

  MODELO         : modelo1b
  Marco de datos : variables globales
  Formula        : Ir ~ 1 + Fi + Ld + Inq0 + Ocl + Lp_dc

Estimacion de los coeficientes poblacionales

                Estimacion   Error Est. Estadistico T
:                   :            :            :
:                   :            :            :
Lp_dcTRUE     1.717800e-03 9.210058e-04     1.8651343
                 :
                 :
Coeficientes de determinacion

   R^2 : 0.7059548   R^2 ajustado : 0.7053634
       :
       :
  Desv. estandar residual:  0.02269156
No se imprime la tabla completa de resumen para ahorrar espacio. Lo que se quiere resaltar es que para este modelo, el coeficiente de Lp_dcTRUE (prestamos cuyo propósito es la consolidación de deudas) es positivo, lo cual coincide con lo observado en el análisis exploratorio respecto a que los prestamos para consolidación de deudas tienen tasas de interés más altas.  Sin embargo, eliminamos una variable que era muy significativa (la variable Ar) y por lo tanto, el coeficiente de determinación disminuyó a un poco más de 70%- aproximadamente 6% menos que el modelo1a.  Para evitarnos el problema de tener una variable con efecto supresor, eliminaremos más bien la variable Lp_dc (que era menos significativa que Ar) e incorporaremos otra vez la variable Ar.  Una vez obtenido el nuevo modelo (modelo1c), imprimimos un resumen y generamos las gráficas para el diagnostico de residuos.

modelo1c <- regresion.lineal(Ir~1+Ar+Fi+Ld+Inq0+Ocl)
resumen(modelo1c)
graficar(modelo1c)
--------------------------------------------------------------
Resumen de regresion lineal

  MODELO         : modelo1c 
  Marco de datos : variables globales 
  Formula        : Ir ~ 1 + Ar + Fi + Ld + Inq0 + Ocl 

Estimacion de los coeficientes poblacionales

                Estimacion   Error Est. Estadistico T
[Intercepto]  7.349896e-01 8.449383e-03     86.987369
Ar            1.454991e-06 5.883215e-08     24.731215
Fi           -8.735828e-04 1.181075e-05    -73.965030
Ld60          3.206793e-02 1.082213e-03     29.631794
Inq0TRUE     -1.078765e-02 8.230728e-04    -13.106558
Ocl          -5.111106e-04 9.329393e-05     -5.478498
                p-valor
[Intercepto] < 2.22e-16
Ar           < 2.22e-16
Fi           < 2.22e-16
Ld60         < 2.22e-16
Inq0TRUE     < 2.22e-16
Ocl          4.7207e-08

Prueba F global

  Valor F : 1606.766   gl. num: 5   gl. den : 2486 
  p-valor : < 2.22e-16 

Coeficientes de determinacion

   R^2 : 0.7636844   R^2 ajustado : 0.7632091 

Residuos

  Minimo  : -0.09370228 
  Mediana : -0.002240513 
  Maximo  : 0.09816036 

  Desv. estandar residual:  0.02034247 

--------------------------------------------------------------
Verificamos que al volver a incorporar la variable Ar, el coeficiente de regresión sube a 76%. Realmente, la variable Lp_dc no contribuye en mucho sobre la variabilidad de la tasa de intereses. Para terminar de validar el modelo, estudiamos las gráficas de diagnóstico de análisis de residuos:

Fig 1.1
Fig 1.2
Fig 1.3

Las gráficas de verificación de normalidad (Fig. 1.1 y 1.2) no revelan desviaciones problemáticas de normalidad. Aún cuando el p-valor del test de normalidad revela que la distribución de los residuos es significativamente distinta de la distribución normal, podemos ver que en el plot cuantíl-cuantíl, ello se debe a que hay muchos residuos significativamente mayores a cero (son residuos atípicos).  Esto ocurre con frecuencia cuando tenemos tantos datos (2492 observaciones).  Lo que sí llama la atención son los patrones convexos (en forma de U) visibles en los diagramas de dispersión de los residuos versus las variables Fi y Ocl (Fig. 1.3.c y 1.3.d).  Esto revela que la relación entre estas variables y la tasa de interés (Ir) no es netamente lineal, lo cual ya habiamos advertido en el análisis exploratorio.  Tomando esta no linealidad en cuenta, incorporamos términos cuadráticos para estas variables, lo cual produce el modelo2:


Segundo modelo de regresión


modelo2 <- regresion.lineal(Ir~1+Ar+Fi+I(Fi^2)+Ld+Inq0+Ocl+I(Ocl^2))
resumen(modelo2)
graficar(modelo2)

Fig 2.1
Fig 2.2


Fig 2.3

En cuanto a la normalidad de los residuos, este segundo modelo es muy parecido al primero y valen las mismas observaciones que se hicieron anteriormente. Sin embargo, en las gráficas de dispersión de los residuos versus las variables independientes (Fig. 2.3) no se observa ningún problema de heterocedasticidad o no linealidad, por lo cual los residuos del segundo modelo tienen un "mejor" comportamiento que los del primer modelo. Ejecutando la instrucción resumen(modelo2) vemos la tabla de resumen:
--------------------------------------------------------------
Resumen de regresion lineal

  MODELO         : modelo2 
  Marco de datos : variables globales 
  Formula        : Ir ~ 1 + Ar + Fi + I(Fi^2) + Ld + Inq0 + Ocl + I(Ocl^2) 

Estimacion de los coeficientes poblacionales

                Estimacion   Error Est. Estadistico T
[Intercepto]  3.553545e+00 1.275557e-01      27.85877
Ar            1.558942e-06 5.216556e-08      29.88451
Fi           -8.637778e-03 3.535800e-04     -24.42949
Fi^2          5.366278e-06 2.444955e-07      21.94837
Ld60          3.218830e-02 9.567038e-04      33.64500
Inq0TRUE     -1.043817e-02 7.277374e-04     -14.34332
Ocl          -4.370420e-03 2.763538e-04     -15.81458
Ocl^2         1.597878e-04 1.087364e-05      14.69497
                p-valor
[Intercepto] < 2.22e-16
Ar           < 2.22e-16
Fi           < 2.22e-16
Fi^2         < 2.22e-16
Ld60         < 2.22e-16
Inq0TRUE     < 2.22e-16
Ocl          < 2.22e-16
Ocl^2        < 2.22e-16

Prueba F global

  Valor F : 1568.202   gl. num: 7   gl. den : 2484 
  p-valor : < 2.22e-16 

Coeficientes de determinacion

   R^2 : 0.8154726   R^2 ajustado : 0.8149526 

Residuos

  Minimo  : -0.09329256 
  Mediana : -0.001115824 
  Maximo  : 0.1044033 

  Desv. estandar residual:  0.01798302 

--------------------------------------------------------------
No solamente aumentó el coeficiente de determinación \(R^2\) de 76% a 81%, sino que la desviación estándar residual disminuyó de 0,0203 a 0,01798.  Esto último implica que los errores del modelo 2 son algo menores que los errores del modelo 1c, además de que las variables independientes del segundo modelo (con los términos cuadráticos de Fi y Ocl), explican un mayor porcentaje de la variabilidad de la tasa de interés que las del modelo 1c.

Hasta aquí deberíamos de estar bastante satisfechos con el modelo de regresión obtenido hasta ahora.  Podemos interpretar el significado de los coeficientes en el marco del problema original de la data del Lending Club.  Debido a que los coeficientes de del monto solicitado (Ar) y de la variable indicadora de prestamos de largo plazo (Ld60) son positivos, tenemos que la tasa de interés será mayor para prestamos de mayor monto requerido o mayor plazo.  El coeficiente de la variable indicadora Inq0TRUE es negativo, lo cual significa que aquellos prestamos para los cuales no se hicieron indagaciones (0 indagaciones) eventualmente tendrán una tasa de interés menor.  Las asociación entre la calificación FICO y la tasa de interés es algo más difícil de explicar, debido a la inclusión del término cuadrático.  De hecho, expresando la asociación de la tasa de interés con la puntuación FICO únicamente en términos de esta última, tenemos:

\[Ir \sim 3,55 - 0,00863\cdot Fi + 0,0000054\cdot Fi^2\]

Al graficar la curva de la fórmula anterior, tendríamos una parábola convexa en forma de U.  Esto quiere decir que para cierto rango de puntuación FICO, la tasa de interés desciende.  Alcanza un punto mínimo y luego comenzaría a ascender.  Si derivamos la función anterior respecto a la variable Fi e igualamos a cero, tenemos una tasa de interés mínima para una calificación FICO de aproximadamente 800 puntos, según este modelo.  Como la curva anterior es una parábola convexa, tendríamos que según este modelo, la tasa de interés comienza a ascender nuevamente para calificaciones FICO mayores de 800 puntos.  Claramente, esto no se corresponde del todo bien al tipo de asociación que esperaríamos entre ambas variables: un solicitante con una calificación FICO de 800 no debería obtener un crédito con menor tasa de interés que alguien con una calificación FICO de 850, porque este último tiene un mejor historial crediticio.  Sin embargo, no hay muchos prestamos con calificaciones FICO mayores a 800 puntos, y la rata de crecimiento en las tasas de intereses para estos casos no es tan significante.

Por último, vamos a hacer un experimento: construir un modelo de regresión igual al anterior pero sin un término de intercepto.  No es que esto sea una buena idea; de hecho, no lo es porque el termino del intercepto es muy significativo en el modelo 2 (p-valor casi nulo). Sin embargo, se quiere discutir un punto importante referente a la interpretación del coeficiente de determinación:

modelo3 <- regresion.lineal(Ir~-1+Ar+Fi+I(Fi^2)+
           Ld+Inq0+Ocl+I(Ocl^2))
                      :
                      :
                      :
Coeficientes de determinacion

   R^2 : 0.9828925   R^2 ajustado : 0.9828374

Residuos

  Minimo  : -0.09329256
  Mediana : -0.001115824
  Maximo  : 0.1044033

  Desv. estandar residual:  0.01798302

Pudiesemos pensar que estamos frente a un mejor modelo, con un coeficiente de determinación de 98% bastante superior al coeficiente de determinación del modelo de regresión anterior de 81%.  Sin embargo, si comparamos ambos modelos en base al error (medido en términos de la desviación estándar de los residuales), ambos modelos son semejantes, con una desviación estándar residual de 0,01798.  Examinando este asunto más minuciosamente y teniendo en cuenta que el coeficiente de determinación indica el porcentaje de variabilidad de la tasa de interés (variable dependiente) debido a la variabilidad de las variables independientes, debemos concluir que este coeficiente de determinación de 98% no revela lo que realmente está ocurriendo.  Es exagerado porque cuando no hay término de intercepto, una mayor cantidad de variabilidad de la variable dependiente será adosada a las variables independientes que quedan, de ahí que \(R^2\) se "infla" en tal magnitud al eliminar el término de intercepto de un modelo.

Del experimento anterior intuimos que la decisión de no incluir el término de intercepto no debe ser tomada a la ligera, solamente tomando en cuenta la ganancia en el coeficiente de determinación.  El termino de intercepto nos indica el valor de la variable dependiente cuando todas las variables independientes son iguales a cero.  Sin un término de intercepto, la tasa de interés sería cero cuando todas las variables independientes son iguales a cero, lo cual es absurdo.  Es preferible por lo tanto siempre incluir un término de intercepto porque este permite una mayor flexibilidad en la modelización de una variable, sobre todo si no conocemos muy bien sobre el marco teórico de aquello que intentamos modelar.  No incluir un término de intercepto en el modelo podría sesgar los valores ajustados de la variable dependiente- en la mayoría de los casos ocurre así. 

No obstante, existen situaciones, sobre todo en el campo de la economía, en donde si tiene sentido omitir el término de intercepto en una regresión.  Por ejemplo, el módelo de producción de Cobb-Douglas plantea la siguiente relación entre la producción (Y), el capital (K) y la mano de obra (L): \(ln\,Y = \beta_1\,ln\,K\,+\,\beta_2\,ln\, L\).  Incluir un término constante en este modelo (el término de intercepto) implicaria una situación irreal en la que hay producción (distinta de cero) sin capital y sin mano de obra.



Conclusiones

Tras este ejercicio de regresión, una de las conclusiones más importantes es que la evaluación comparativa de dos modelos de regresión no se puede realizar exclusivamente en términos de cuál modelo tiene un coeficiente de determinación mayor.  Siempre, como he insistido en otras entradas de este blog, hay que revisar los residuos.  El análisis de residuos es el que revela si existen fallas estructurales en un modelo que en la mayoría de los casos, tienen el efecto de "inflar" el coeficiente de determinación, invalidándolo como una métrica única para evaluar modelos.  En este caso, fue a través del análisis de residuos que se detectó la necesidad de incluir algún término de asociación no lineal de dos variables independientes importantes en el modelo.  La desviación típica de los errores es otro de los parámetros a tener en cuenta para evaluar cuál de entre varios modelos predice los valores de la variable dependiente con menos error.  Otro factor que hay que vigilar es el de las variables de confusión.  La presencia de variables de confusión en un modelo puede afectar en formas no deseadas la estimación de los coeficientes del modelo.  Por último, la eliminación (omisión) del término de intercepto es algo que se debe hacer con cuidado y siempre cuando haya fundamentos teóricos de la situación bajo estudio que lo justifiquen.  En todo caso, eliminar el término del intercepto casi siempre hace que el coeficiente de determinación aumente, pero esto no debe tomarse como un indicativo que los modelos sin términos de intercepto sean mejores.


Como citar esta entrada

Romero, J. (Marzo, 2013). The Lending Club - parte III. [Entrada de blog]. Recuperado desde https://unamatematicaseltigre.blogspot.com/2013/04/the-lending-club-parte-iii.html.

Si te gustó o te pareció útil este contenido, compártelo en las redes sociales y dale tu voto positivo en el botón "me gusta" de G+, para que otros puedan encontrar el contenido también.

miércoles, 27 de marzo de 2013

The Lending Club - Parte II

Para comenzar a trabajar con este ejemplo


En la primera parte de esta serie de entradas, se expuso la información de contexto sobre el problema del Lending Club. En la siguiente parte, se hará el ejercicio de construcción de modelos de regresión lineal.

La data con la que se trabajará para este ejemplo está disponible para su descarga desde este enlace. Una vez descargado ese archivo, colóquelo en su directorio de trabajo de R, que usualmente será "Mis Documentos" en el caso de Windows. Para trabajar con este ejemplo, también debe tener la librería "estUNA" en su directorio de trabajo (consulte esta en si tiene dudas sobre cómo descargar estUNA y colocarla en su directorio de trabajo).


Sobre la data del problema del "Lending Club"

El archivo identificado arriba "lending_club.Rda" contiene un data frame identificado como loandata.  A continuación se detallan las variables contenidas en loandata como columnas.

Identificador de variable Descripción
Ar (Amount Requested) Monto solicitador por el prestatario para financiamiento.
Af (Amount Funded) Monto financiado.
Ir (Interest Rate) Tasa de Interés del financiamiento. Esta es la variable dependiente.
Ld (Loan Duration) Variable categórica correspondiente a la duración del préstamo (36 o 60 meses).
Lp (Loan Purpose) Variable categórica correspondiente al propósito del préstamo.
DtIR (Debt-to-income Ratio) Coeficiente de deuda sobre ingresos.
St (State) Código de dos letras correspondiente al estado de residencia del prestatario.
Ho (Home ownership) Tipo de propiedad sobre la casa: "NONE" es ninguna casa, "MORTGAGE" indica hipoteca sobre la casa, "OWN" indica que la casa es propia y "RENT" indica que la casa es alquilada.
I (Income) Ingreso mensual.
Fi (FICO) Puntuación FICO del solicitante.
Ocl (Open Credit Lines) Cantidad de líneas de crédito abiertas del solicitante.
Rcb (Rotating credit balance) Balance rotativo de credito.
Inq (Inquiries) Número de veces que algún comercio ha solicitado un reporte crediticio certificado.
Ed (Employment duration) Tiempo en el actual empleo.

En todo informe de análisis de datos, es importante indicar el tamaño de la muestra empleada en el estudio.  El data frame loandata consta de 2492 observaciones (o renglones) y 14 variables (o columnas).

Análisis exploratorio de los datos


Antes de emprender el planteamiento de los modelos de regresión para inferir cuales variables, en definitiva, inciden sobre la fijación de la tasa de interés de un préstamo, es conveniente realizar un análisis exploratorio de los datos. En un análisis exploratorio se utilizan técnicas de la estadística descriptiva para "descubrir" el comportamiento de las variables, su variabilidad inherente y la variabilidad conjunta entre las mismas.El análisis exploratorio nos debe conducir a plantear uno o varios modelos de regresión viables y a entender cómo o donde estos pueden fallar.

A continuación damos el script en R que realiza los distintos pasos del análisis exploratorio. Si va a experimentar con este script en su computadora, recuerde que debe tener el archivo de la librería estUNA y el archivo de data lending_club.Rda en su directorio de trabajo. Seguidamente iremos interpretando los resultados.

load("estUNA")
load("lending_club.Rda")
attach(loandata)
options(width=60)
png("exploratorio%02d.png")
#Imprime un resúmen del data frame
summary(loandata)
#Matriz de correlación entre las variables cuantitativas
cor(loandata[,c("Ar","Af","Fi","I","Ocl","Rcb","Inq","Ir")])
#La primera gráfica es un histograma de Ir
graficar(Ir)
#A continuación unas graficas de dispersión
#Grafica la tasa de intereses (eje Y) versus:
graficar.dispersion(Ar,Ir,cex=0.2,pch=19)
#Monto solicitado
graficar.dispersion(Af,Ir,cex=0.2,pch=19)
#Monto financiado
graficar.dispersion(Fi,Ir,cex=0.2,pch=19)
#Puntuación FICO
graficar.dispersion(I,Ir,cex=0.2,pch=19)
#Ingreso mensual
graficar.dispersion(Ocl,Ir,cex=0.2,pch=19)
#Lin. credito abiertas
graficar.dispersion(DtIR,Ir,cex=0.2,pch=19)
#Deuda/Ingresos
graficar.dispersion(Rcb,Ir,cex=0.2,pch=19)
#Balance crédito rotativo
graficar.dispersion(Inq,Ir,cex=0.2,pch=19)
#Cantidad de indagaciones
#Diagramas de caja comparativos
#Grafica la relación entre la tasa de interés
#y las siguientes variables categóricas:
caja(Ir,Ho)   #Propiedad de la vivienda
caja(Ir,Ed)   #Tiempo en el empleo actual
caja(Ir,Ld)   #Plazo de financiamiento (36 o 60 meses)
#Para las siguientes dos variables, la visualización
#más adecuada es una tabla.
#Estudia la variabilidad de las tasas de interés según:
#1) El propósito del prestamo (Lp)
lp_mat <- t(sapply(levels(Lp),
            function(s)
               c(sum(Lp==s), median(Ir[Lp==s]),
                 wilcox.test(Ir~Lp==s)\(\$\)p.value)
              )
            )
colnames(lp_mat) <- c("frec","mediana","p_valor")
lp_mat <- as.data.frame(lp_mat)
lp_mat <- lp_mat[order(lp_mat\(\$\)frec,decreasing=TRUE),]
lp_mat
#2) El estado de residencia del prestatario:
st_mat <- t(sapply(levels(St),
            function(s)
               c(sum(St==s), median(Ir[St==s]),
                 wilcox.test(Ir~St==s)\(\$\)p.value)
              )
            )
colnames(st_mat) <- c("frec","mediana","p_valor")
st_mat <- as.data.frame(st_mat)
st_mat <- st_mat[order(st_mat\(\$\)frec,decreasing=TRUE),]
st_mat
Como primer paso del análisis exploratorio, se genera un resumen con las principales estadísticas del data frame. Esto lo hace la instrucción summary(loandata), tras lo cual se imprime lo siguiente:
       Ar              Af              Ir          Ld      
 Min.   : 1000   Min.   :  200   Min.   :0.0542   36:1944  
 1st Qu.: 6000   1st Qu.: 6000   1st Qu.:0.1016   60: 548  
 Median :10000   Median :10000   Median :0.1311            
 Mean   :12431   Mean   :12038   Mean   :0.1308            
 3rd Qu.:17000   3rd Qu.:16000   3rd Qu.:0.1580            
 Max.   :35000   Max.   :35000   Max.   :0.2489            
                                                           
                  Lp            DtIR              St      
 debt_consolidation:1306   Min.   :0.0000   CA     : 432  
 credit_card       : 442   1st Qu.:0.0975   NY     : 253  
 other             : 197   Median :0.1533   TX     : 174  
 home_improvement  : 152   Mean   :0.1540   FL     : 169  
 major_purchase    : 101   3rd Qu.:0.2068   IL     : 101  
 small_business    :  87   Max.   :0.3491   GA     :  97  
 (Other)           : 207                    (Other):1266  
        Ho             I                  Fi       
 MORTGAGE:1146   Min.   :   588.5   Min.   :642.5  
 NONE    :   0   1st Qu.:  3500.0   1st Qu.:682.5  
 OTHER   :   5   Median :  5000.0   Median :702.5  
 OWN     : 200   Mean   :  5687.6   Mean   :708.4  
 RENT    :1141   3rd Qu.:  6800.0   3rd Qu.:727.5  
                 Max.   :102750.0   Max.   :832.5  
                                                   
      Ocl             Rcb              Inq        
 Min.   : 2.00   Min.   :     0   Min.   :0.0000  
 1st Qu.: 7.00   1st Qu.:  5612   1st Qu.:0.0000  
 Median : 9.00   Median : 10978   Median :0.0000  
 Mean   :10.07   Mean   : 15263   Mean   :0.9013  
 3rd Qu.:13.00   3rd Qu.: 18900   3rd Qu.:1.0000  
 Max.   :38.00   Max.   :270800   Max.   :9.0000  
                                                  
       Ed     
 10+    :653  
 < 1    :247  
 2      :244  
 3      :234  
 5      :201  
 4      :192  
 (Other):721

Para las variables cuantitativas, la instrucción summary(...) devuelve una tabla con las principales medidas de posición (mínimo, 1er cuartíl, mediana y media, 3er cuartíl, máximo). Para las variables categóricas (o variables tipo "factor", como se les conoce en R), summary(...) devuelve una tabla de frecuencias para algunos niveles de la variable (los más frecuentes). Estos resultados permiten apreciar rápidamente cuál rango de valores asume cada variable.  Por ejemplo, podemos observar que la distribución de la variable Ar, en términos de los estadísticos de posición más importantes, es bastante similar a la de la variable Af. Esto tiene bastante sentido, pues esperaríamos que el monto solicitado y el monto financiado sean muy parecidos, una vez aprobado el préstamo.  Nótese el uso de la instrucción attach(...) al principio del script para referirse fácilmente a las variables de loandata en lo sucesivo.

Otra tabla bastante útil en un análisis exploratorio es la tabla de las correlaciones entre las variables.  Esto por cierto sería muy útil para estudiar la colinealidad o multicolinealidad de las variables, según se exige para el trabajo de este semestre.  La instrucción cor(...) en R genera una matriz cuadrada de correlaciones entre todas las variables.  Como cada variable está perfectamente correlacionada consigo misma, los elementos de la diagonal son todos "1".  De hecho,  una correlación de "1" o "-1" indica una colinealidad perfecta entre dos variables.  Puede consultar más sobre esto en el artículo de wikipedia sobre correlación lineal.  La matriz de correlación sólo tiene sentido para variables cuantitativas del data frame, lo cual en este caso se determina por medio de la instrucción cor(loandata[,c("Ar","Af","Fi","I","Ocl","Rcb","Inq","Ir")]) :

              Ar          Af           Fi           I
Ar    1.00000000  0.97022602  0.083040383  0.39109060
Af    0.97022602  1.00000000  0.073791988  0.37468574
Fi    0.08304038  0.07379199  1.000000000  0.12355539
I     0.39109060  0.37468574  0.123555388  1.00000000
Ocl   0.19680145  0.18779714 -0.090039520  0.17180076
Rcb   0.29277055  0.26116166  0.003217914  0.35936379
Inq  -0.02721561 -0.06224654 -0.092828774  0.03398569
Ir    0.33141077  0.33627376 -0.709911785  0.01231114
DtIR  0.07985656  0.09177385 -0.217596139 -0.16376264
             Ocl         Rcb         Inq          Ir
Ar    0.19680145 0.292770550 -0.02721561  0.33141077
Af    0.18779714 0.261161657 -0.06224654  0.33627376
Fi   -0.09003952 0.003217914 -0.09282877 -0.70991178
I     0.17180076 0.359363787  0.03398569  0.01231114
Ocl   1.00000000 0.290582979  0.10790657  0.09109025
Rcb   0.29058298 1.000000000  0.01285580  0.06042262
Inq   0.10790657 0.012855801  1.00000000  0.16846322
Ir    0.09109025 0.060422621  0.16846322  1.00000000
DtIR  0.37172725 0.188286897  0.01126195  0.17143913
            DtIR
Ar    0.07985656
Af    0.09177385
Fi   -0.21759614
I    -0.16376264
Ocl   0.37172725
Rcb   0.18828690
Inq   0.01126195
Ir    0.17143913
DtIR  1.00000000

Por razones tipográficas de espacio, la matriz de correlación de arriba se dividió en tres segmentos: el primero con las primeras cuatro columnas de la matriz, el segundo en el renglón de abajo con las siguientes cuatro columnas de la matriz y la última columna de la matriz en el tercer renglón. Nótese que la correlación de cada variable consigo misma es "1". También se puede observar que las variables Ar y Af están muy correlacionadas (correlación mayor a 97%). Esto implica que incluir ambas variables en un mismo modelo de regresión lineal puede generar un problema de colinealidad o multicolinealidad (para más detalles, puede consultar la sección 14.4 del libro "Probabilidad y Estadística" de G. Canavos). Ya se había comentado anteriormente sobre la relación (semántica) entre ambas variables- en lo sucesivo consideraremos solamente a la variable Ar, porque el monto solicitado del financiamiento es la información previa necesaria para decidir el monto a financiar y la tasa de interés del crédito.  También podemos notar que la puntuación FICO (Fi) y la tasa de interés (Ir) tienen bastante correlación (-0.71).  Esto indica que la variable Fi es una buena candidata para incluirse en un modelo de regresión lineal con la tasa de interés como variable dependiente.  Además, el signo negativo de la correlación indica que el coeficiente de regresión para la variable Fi en el modelo lineal también debería ser negativo.

La puntuación FICO del solicitante está muy correlacionada con la tasa de interés del préstamo. Pero a su vez, como vimos en la primera parte de esta serie (The Lending Club - Parte I), muchas de las variables en este data frame son tomadas en cuenta para el cálculo de la calificación FICO. Entonces, por una parte esperaríamos cierta correlación entre esas variables y la calificación FICO. Si esas variables se incluyen en el modelo lineal, pudiésemos estar ante un problema de variables de confusión (confounder variables).  Las variables de confusión son aquellas que están correlacionadas con la variable dependiente y con alguna o algunas de las otras variables independientes del modelo. El problema que generan las variables de confusión es que a veces, sus efectos sobre la variable dependiente pueden ser exagerados. También puede ocurrir lo que se llama un efecto supresor. Puede consultar más sobre estos temas en este blog. Por nuestra parte, algunos de estos conceptos saldrán a relucir a medida que iremos ensayando distintos modelos de regresión lineal.

A continuación podemos observar algunas gráficas. La primera (Fig. 1) es un histograma de las tasas de interés:

Fig. 1 - Histograma de las tasas de interés
Esta variable tiene una distribución casi acampanada ... ¡Un momento! ¿Qué es ese segundo pico que se observa a la izquierda, en el intervalo [0,06 - 0,08)? Bueno, una variable así difícilmente sea normalmente distribuida, lo cual no es un problema en sí. Sin embargo, llama la atención que exista un grupo tan significativo de prestamos con tasas de interés en ese rango.  Quizás, alguna de las variables independientes pueda explicar ese comportamiento...

Seguimos con la parte más ilustrativa de nuestro análisis exploratorio, que son las gráficas de dispersión entre la tasa de interés y las otras variables cuantitativas (Fig. 2):


Fig. 2 - Gráficas de dispersión de las variables independientes cuantitativas respecto a la variable dependiente Ir.

(a) Ar / Ir
 (b) Fi / Ir
(c) I / Ir
(d) Ocl / Ir
(e) DtIR / Ir
(f) Rcb / Ir
(g) Inq/ Ir

Los diagramas de dispersión de la Figura 2 confirman que, entre todas las variables independientes, la calificación FICO (Fi) es la más fuertemente asociada a la tasa de interés (Ir). Esto era de esperarse, pero el diagrama de dispersión de la Figura 2.b. revela más detalles sobre esta asociación: la curva lowess (la línea verde oscura) tiene la misma pendiente hasta una puntuación FICO de 750 (aproximadamente, o a pepa de ojo). A partir de 750 puntos en la calificación FICO, la pendiente de la curva lowess se hace más horizontal.  Esto implica que a mayor puntuación FICO, menor tasa de interés del préstamo, pero a partir de 750 puntos FICO, la diferencia no es tan grande.  Dado la magnitud de la asociación entre estas dos variables, la recta lineal quizás no sea el tipo de asociación más idónea entre estas variables.

Otro patron marcado según la curva lowess se puede observar (ver Figura 2.a) en la asociación del monto solicitado para el financiamiento (Ar) y la tasa de interés (Ir), aunque esta asociación no es tan marcada como la asociación Fi-Ir, cuyos puntos en el diagrama de dispersión son menos dispersos respecto a la curva lowess. También se observa una relación creciente entre la cantidad de líneas de crédito abiertas y la tasa de interés (Figura 2.d).   Esta asociación podría no ser no-lineal, dado la convexidad de la curva lowess que se observa en la gráfica.

La variable DtIr (relación Deuda-Ingresos) también tiene una asociación creciente con la tasa de interés (ver Figura 2.e). Sin embargo, dada la baja correlación entre estas variables (de apenas 0.17 según la matriz de correlación de arriba) y el alto grado de dispersión de los puntos, es posible que esta variable no sea significativa en un modelo de regresión.  La Figura 2.g revela un patrón interesante: para 0 indagaciones (solicitudes de reportes de historial crediticio), las tasas de interés son más bajas.  Para 1 o más indagaciones, las tasas de interés no difieren significativamente.  Esto indica que posiblemente sea conveniente transformar la variable Inq a una variable indicadora según sea Inq=0 o no.

Las otras dos variables, ingresos mensuales (I) y balance rotativo de crédito (Rcb) contienen muchos datos atípicos hacia el extremo derecho para ser útiles.  Estos datos atípicos (en forma de ingresos mensuales astronomicamente altos por ejemplo) podrían afectar la regresión en formas no deseadas, por lo cual su inclusión en un modelo de regresión quizás no sea una buena idea.

Para explorar la asociación entre la tasa de interés y otras variables categóricas, lo más conveniente es usar diagramas de caja comparativos. Así se hizo para las variables Ho, Ed y Ld, como se muestra en la Figura 3:

(a) Ir ~ Ho
(b) Ir ~ Ed
(c) Ir ~ Ld

Las primeras dos gráficas de caja (Figuras 3.a y 3.b) no revelan asociaciones significativas entre la tasa de interés y las respectivas variables. En contraste, La Figura 3.c indica que si hay una relación significativa entre la tasa de interés y la duración del préstamo: los prestamos de 36 meses tienen tasas de interés signficativamente más bajas.

Para las otras dos variables cualitativas - el estado de residencia (St) y el propósito del préstamo (Lp) - no se hicieron diagramas de caja comparativos porque estas variables tienen demasiados niveles (46 estados y 14 propósitos de préstamo diferentes).  Para cada una de estas variables, se optó por generar tablas indicando la frecuencia de cada nivel, la tasa de interés mediana y el p-valor del contraste Wilcoxon de diferencia entre medianas (consultar el artículo en Wikipedia). La idea es verificar si para algún nivel determinado de estas variables, las tasas de interés difieren significativamente de aquellas asociadas a los otros niveles. Para la variable estado (St):

   frec mediana    p_valor
CA  432 0.13110 0.69246237
NY  253 0.13110 0.82515314
TX  174 0.13110 0.30747046
FL  169 0.13110 0.88525055
IL  101 0.12530 0.22145716
GA   97 0.12180 0.27619025
PA   96 0.13045 0.23581778
NJ   92 0.12120 0.38675613
VA   78 0.12550 0.78497883
MA   73 0.12120 0.38183801
OH   71 0.12230 0.10542538
MD   68 0.13790 0.62463807
NC   64 0.12405 0.34075690
CO   61 0.13110 0.92712927
WA   58 0.13110 0.89902872
CT   50 0.13140 0.29789052
AZ   46 0.13110 0.86390489
MI   45 0.14090 0.01538049
MN   38 0.13545 0.34930242
:     :     :        :
:     :     :        :
Esta tabla (dada aquí de forma parcial) enumera los 46 estados en orden descendente por frecuencia de observaciones. Podemos observar que para el estado MI (Michigan), la tasa de interés mediana es significativamente distinta de la de los otros estados (con un p-valor de 1% en el contraste de Wilcoxon). Esto implica que los prestamos de los solicitantes de ese estado tienen una tasa de interés más alta, por alguna razón. Sin embargo, como solo 45 de las 2492 observaciones son de ese estado, incluir la variable St en un modelo de regresión lineal solamente para ajustar mejor a un grupo que representa menos del 2% de las observaciones sería un despropósito. Seguidamente tenemos una tabla similar para el propósito del prestamo: 

                   frec mediana      p_valor
debt_consolidation 1306 0.13490 6.704956e-11
credit_card         442 0.13110 9.769974e-01
other               197 0.13060 6.911076e-01
home_improvement    152 0.11130 2.162582e-06
major_purchase      101 0.11120 2.559098e-08
small_business       87 0.12840 6.169896e-01
car                  50 0.10475 9.231269e-04
wedding              39 0.12210 2.223396e-01
medical              30 0.13110 8.066417e-02
moving               29 0.13110 6.110691e-01
vacation             21 0.12120 3.160609e-01
house                20 0.13085 8.177116e-01
educational          14 0.09755 4.628680e-02
renewable_energy      4 0.09130 1.336665e-01
Para esta variable, si se observa un subgrupo grande (con 1306 observaciones), cuya tasa de interés difiere significativamente de la de otros grupos (p-valor casi nulo).  Este grupo es el grupo de prestatarios que solicitaron un préstamo para consolidación de deudas (debt consolidation). Existen otros grupos con tasas de interés significativamente distintas, pero son muy pequeños en relación con el número total de observaciones. Por cierto, la tasa de interés mediana de los prestamos solicitados para consolidación de deudas (13,49%) es mayor a la tasa de interés mediana general (13,11%). De esto se deduce que sería conveniente incluir una variable indicadora en el modelo de regresión según sea el propósito del préstamo la consolidación de deudas o no.


Análisis exploratorio de datos - algunas conclusiones

Tras realizar el ejercicio anterior, podemos concluir sobre la importancia de explorar los datos antes de construir los modelos de regresión. Las observaciones realizadas tras este estudio exploratorio se pueden aunar al conocimiento o a las ideas previas que tenemos sobre la temática que estamos estudiando (en este caso, los prestamos personales en EEUU). Esto ayudará a plantear posibles hipótesis sobre las relaciones de las variables en forma de modelos de regresión lineal. Es importante destacar que un análisis exploratorio no es inferencial. Todo lo que observamos hasta este punto queda en forma de conjetura y no es generalizable a la población. Cuando, tras realizar el ajuste por mínimos cuadrados de un modelo de regresión lineal, tenemos los p-valores de la prueba F, los estadísticos T-Student de significatividad de los coeficientes poblacionales y cuando finalmente realicemos un análisis de residuos para validar el modelo, si tendremos los elementos estadísticos requeridos para un estudio inferencial. El análisis exploratorio sirve para guiar al análisis de regresión, el cual haremos en la tercera y última parte de estas entradas del blog...

Como citar esta entrada

Romero, J. (Marzo, 2013). The Lending Club - parte II. [Entrada de blog]. Recuperado desde https://unamatematicaseltigre.blogspot.com/2013/03/the-lending-club-parte-ii.html.


Si te gustó o te pareció útil este contenido, compártelo en las redes sociales y dale tu voto positivo en el botón "me gusta" de G+, para que otros puedan encontrar el contenido también.

martes, 19 de marzo de 2013

Observaciones sobre el trabajo de estadística (regresión lineal) del semestre 2013-1

He visto que algunos tienen dudas respecto al trabajo de estadística para este semestre, en particular lo referente a la regresión lineal, que forma parte de los objetivos a evaluar para las asignaturas 745, 738 y 748.

Primero, debo aclarar, una vez más, lo siguiente:
NO ES OBLIGATORIO EL USO DE R PARA LA REALIZACIÓN DE ESTE TRABAJO.  POR RAZONES HARTO EXPLICADAS EN ESTA PÁGINA, YO RECOMIENDO EL USO DE R, PERO EL ESTUDIANTE PUEDE OPTAR POR USAR EXCEL, SAS, SPSS, MINITAB O CUALQUIER APLICACION ESTADÍSTICA (Excel es un programa de hoja de cálculo, no una aplicación para la estadística). LO QUE SE REQUIERE ES REALIZAR LAS ACTIVIDADES QUE SE PIDEN EN EL ENUNCIADO CORRECTAMENTE.
Al momento de elegir la aplicación con la cual trabajarán, deben preguntarse: ¿Qué es lo que se requiere que el estudiante realice correctamente?  Se copia la parte del enunciado detallando las actividades a realizar:

6.1. Obtener los siguientes modelos de regresión lineal múltiple,
        Modelo 1: Y = b0 + b1 X1 + b2 X2 + b3 X3 + b4 X4 + b6 X6 +b7 X7 + b8 X8 + b9 X9
        Modelo 2: Y = b1 X1 + b2 X2 + b3 X3 + b4 X4 + b6 X6 + b7 X7 + b8 X8 + b9 X9
6.2. Explicar cual de los modelos anteriores consideraría para realizar el estudio.
6.3. Estudiar la posibilidad de colinealidad o multicolinealidad en el modelo
        considerado en la pregunta anterior. Si existe, corregir este problema y obtener el
        nuevo modelo.
6.4. Partiendo del modelo obtenido en la pregunta 6.3, explicar todos los resultados
        arrojados por el programa (coeficientes y estadísticos).
6.5. Utilizar el procedimiento de regresión paso a paso (eliminación hacia atrás) para
        encontrar el modelo que mejor se ajusta. Interprete los coeficientes de este último
        modelo.
6.6. Considere una nueva variable,
        X11=(X3+X4)/2.
        Construir el siguiente modelo,
        Y = b1 X1 + b2 X2 + b7 X7 + b8 X8 + b9 X9 + b11 X11
        Realizar el procedimiento indicado en 6.5.
6.7. Explicar cual de los modelos obtenidos en 6.5 y 6.6 representa “mejor” la situación
         bajo estudio.
6.8. Realizar un análisis de residuos para los modelos obtenidos en los puntos 6.5
        y 6.6.
6.9. Explicar los fundamentos teóricos que justifican o no, todos los pasos seguidos
        desde el ítem 6.1. hasta el ítem 6.8.

Antes de elaborar el trabajo, asegúrese de manejar los fundamentos de la técnica de regresión lineal.  ¿Sabe usted qué es la regresión lineal y qué es un modelo de regresión lineal? ¿Sabe en qué consiste un análisis de residuos y cuál es la importancia de realizarlo? ¿Sabe en que consiste el procedimiento de regresión paso a paso (eliminación hacia atrás)? ¿Sabe cómo determinar la colinealidad entre dos variables? ¿Entre múltiples variables? ¿Sabe porqué es problemático  trabajar con variables predictoras que sean colineales entre sí? ¿Sabe cómo evaluar o comparar modelos y cómo esto va más allá de comparar sus coeficiente de determinación? ¿Sabe cómo interpretar un modelo de regresión lineal y determinar cuales variables predictoras son significativas? ¿Sabía que las variables categóricas no se pueden utilizar directamente como variables cuantitativas sin antes transformarlas en variables indicadoras?

He puesto a su alcance ciertos recursos que serán de utilidad.  En la parte inferior de la página http://unamatematicaseltigre.blogspot.com/p/estadistica-aplicada.html podrán ubicar la bibliografía más relevante.  Los capítulos 13 y 14 del Canavos tratan en detalle el tema de la regresión lineal, incluyendo información detallada sobre el problema de la multicolinealidad, las variables indicadoras y el análisis de residuos.  El Webster no es tan extenso, pero lo menciono porque es el texto principal de la asignatura.  Además de esto, he escrito una monografía sobre el análisis de residuos cuya lectura recomiendo.

Me he dedicado laboriosamente a poner a su alcance varias herramientas computacionales y guias tutoriales sobre su uso.   Consideren estos recursos cómo herramientas- su buen uso depende del criterio de ustedes y de lo que desean realizar.  Si optan por usar R y la librería estUNA que he creado para tal fin, estudien detenidamente los siguientes recursos:


Si optan por usar R con mi librería y presentan problemas con su descarga o uso, deben describir detalladamente el error que presentan.  Si sólo me indican que "no logran usar el R", o "me sale un error", sin indicar la secuencia de comandos que están intentando ejecutar, cuál es la salida del interprete y el aviso de error, cuál plataforma/sistema operativo o versión de R están usando, no les puedo ser de mucha ayuda.  Tampoco haré el trabajo por ustedes.


Si te gustó o te pareció útil este contenido, compártelo en las redes sociales y dale tu voto positivo en el botón "me gusta" de G+, para que otros puedan encontrar el contenido también.

miércoles, 13 de marzo de 2013

Trabajos de estadística para el semestre 2013-1

Ya están disponibles los enunciados para los trabajos prácticos de estadística del semestre 2013-1, elaborados por Nivel Central.  Los enlaces se dan a continuación (según http://areamatematicas.galeon.com/):

Sobre las fechas de entrega, se ha escrito en los enunciados lo siguiente:

La evaluación del trabajo comprende dos entregas obligatorias:
  • 1era Entrega: primera versión del informe final entre el 15/04/2013 y el 20/04/2013, en esta oportunidad el trabajo será revisado por el asesor y el participante debe registrar las observaciones pertinentes a fin de realizar las correcciones, pues el trabajo lo retiene el asesor hasta la entrega final con el objeto de verificar que las correcciones fueron realizadas.
  • 2da Entrega: Versión final del trabajo entre el 20/05/2013 y el 25/05/2013
    improrrogable. De no respetar las dos entregas en los lapsos correspondientes queda a discreción del asesor considerar reprobado el trabajo.

Cómo de costumbre, las entregas se pueden hacer enviando a mi correo el informe en Open Office, PDF o Word (ojo, versión 2003, no enviar en versión 2007 o posterior).

Les recomiendo (aunque no es obligatorio) el uso de R para la elaboración de este trabajo.  La data para este semestre ya está incorporada en mi librería estUNA.

Si te gustó o te pareció útil este contenido, compártelo en las redes sociales y dale tu voto positivo en el botón "me gusta" de G+, para que otros puedan encontrar el contenido también.

lunes, 5 de noviembre de 2012

Sobre las variables aleatorias continuas, ecuaciones de dibujitos y la moda.

En esta entrada quiero abordar el cálculo de probabilidades para variables aleatorias continuas. Las variables aleatorias continuas son aquellas que asumen todos los valores posibles en algún segmento o porción de la recta real. Para efectos prácticos, sabemos que estamos en presencia de una variable aleatoria contínua cuando los valores u observaciones de dicha variable contienen cifras decimales. Esto último es una regla generalmente válida pero no universal. Por ejemplo, para el trabajo práctico del semestre 2012-1, la variable X7 (Índice de Actividad Física) tiene como posibles valores 1, 1.2, 1.4, 1.6 y 1.8, pero no es una variable continua (aunque sus valores contienen decimales). De hecho, esta variable X7 es una variable ordinal - sus valores se corresponden a grados de actividad física (desde sedentaria hasta muy alta) en una escala ordinal. Además, las 150 observaciones de esta variable asumen algunos de estos 5 posibles valores y no aquellos con otros decimales, como 1.27465, por dar un ejemplo

Aclarando un poco lo anterior, las variables continuas generalmente se corresponden a los tipos de escala "proporcional" o de "intervalo", para las cuales es posible establecer comparaciones de proporción como "la edad de x es el doble de la edad de y", o "el salario mensual de y es una cuarta parte del salario mensual de z". Este tipo de comparaciones no se puede hacer con las variables ordinales ni mucho menos con las variables nominales o categóricas. Por ejemplo, con respecto a la variable X7, no podemos afirmar que una persona con un índice de actividad física de 1.2 (actividad física ligera, hace deporte 1 a 3 veces por semana) tiene un 20% más de actividad física que una persona con índice 1 (sedentaria). Por ser comparables en términos de proporción, estas variables se pueden promediar. De modo que las variables contínuas tienen la media, la mediana y por supuesto la moda como medidas de tendencia central. Volveremos sobre este punto a lo largo de esta entrada. Por ahora vamos a analizar cómo se calculan probabilidades para este tipo de variables. 

En primer lugar, las variables aleatorias continuas tienen algo que se conoce como función de densidad. Es importante acotar que, a diferencia de las variables aleatorias discretas en donde calculabamos probabilidades puntuales mediante la función de probabilidad puntual, para variables continuas la función de desidad no nos permite calcular probabilidades directamente.  Sin embargo, la función de densidad nos caracteriza la distribución de frecuencias de una variable y a partir de ella se deriva la función de distribución de probabilidad acumulada, con la cual sí podemos calcular probabilidades.

 Para las variables uniformes, la función de densidad es constante en un intervalo de valores. La función de densidad exponencial es f( x ) = 1 β e x β para todo x>0. La función de densidad normal es algo más complicada que la función de densidad exponencial y no vale la pena dar su forma explícita aqui. Lo importante es familiarizarse con los tipos de gráficas de estas funciones de densidad:


Fig. 1a - variable uniforme

Fig. 1b - variable exponencial

Fig. 1c - variable normal

Comentando un poco las figuras de arriba, podemos notar que la distribución uniforme distribuye la probabilidad de manera equitativa a través de todo su rango. Por tal razón, el valor esperado de esta variable se ubica en todo el centro del intervalo (5,10), para el ejemplo de la figura 1a (ver la entrada en este blog: "¿Cómo se calcula un valor esperado?"). En la uniforme, que es una distribución simétrica, la media y la mediana coinciden (son iguales a 7.5 para el ejemplo de la figura 1a). Como la función de densidad es uniforme, todos los valores entre 5 y 10 son modales. Por razones de simétría, podemos asumir el valor de 7.5 como el valor modal "más representativo". La distribución exponencial no es simétrica- podemos ver que la mayor densidad de probabilidad está acumulada hacia la izquierda (ver figura 1b). La moda, o el valor con mayor densidad de probabilidad asociado, es el 0 (puede observar que ese es el punto donde la densidad es mayor). La normal es otra distribución simétrica, caracterizada por su típica forma acampanada (ver figura 1c). Para la normal, media, moda y mediana coinciden justo en "el punto de la campana más alto". Nótese que TODA variable aleatoria contínua tiene moda, o por lo menos, un valor modal.

En los cursos introductorios de teoría de probabilidad (asignaturas 737, 745 y 747 de la UNA), vemos algunas distribuciones continuas y cómo calcular probabilidades respecto a estas distribuciones.  La finalidad de esto es reconocerlas como modelos matemáticos de algún fenómeno real y poder así inferir sobre la realidad en base a nuestro modelo matemático.  Por ejemplo, al observar el histograma de frecuencias para la variable X2 (trabajo práctico 2012-1) en la figura 2,


Fig. 2 - histograma de X2

uno podría sospechar que la variable X2 (edades de 150 niños de una muestra) es uniformemente distribuida: las frecuencias de los intervalos de clase, indicadas por las alturas de las barras de la gráfica, son más o menos iguales.  De hecho, tendría mucho sentido escoger una muestra de 150 niños de modo que todos los grupos de edades tuviesen igual representación (frecuencia).  En los cursos de inferencia estadística (asignaturas 746 y 738/748 de la UNA), se estudian técnicas para comprobar si la distribución de frecuencias de una muestra es lo "suficientemente parecida" a alguna distribución de probabilidades específica.  Estas técnicas se conocen como "contrastes de bondad de ajuste".

Para calcular probabilidades de tipo "calcúle la probabilidad de que una variable contínua X asuma valores entre a y b", necesitamos conocer lo que se llama la función de distribución de probabilidad (acumulada).  La función de distribución de probabilidad, denotada por F(x) ("F mayúscula de X", a no confundir con f(x), que es la función de densidad) es básicamente la integral de la función de densidad. Sin embargo, como los que cursan las carreras de contaduría y administración, en cuyo pensum de estudio no figura el cáculo integral, en los formularios se dan directamente las fórmulas o las tablas que nos permiten trabajar con la función de distribución directamente.  Por ejemplo, a continuación damos las fórmulas par las funciones de distribución de la variable uniforme y exponencial:

Función de distribución
uniforme

F ( x ) = P ( X x ) = 0 x < a ( x a ) ( b a ) a x b 1 x > b
    
Función de distribución
 exponencial 


F ( x ) = P ( X x ) = 1 e x β


Estas fórmulas de arriba figuran en el formulario de la UNA como las fórmulas 49 y 55.  Por ejemplo, si queremos calcular P(X<4), para una variable X exponencialmente distribuida con parámetro β=2, enchufariamos el 4 y el 2 como valores para x y β, respectivamente, en la fórmula de arriba, obteniendo así P(X<4)=0,8646.  Obsérvese que en la gráfica debajo de la fórmula donde se sombrea toda el área bajo la curva de la exponencial desde x=0 hasta x=4, el área sombreada se corresponde al 86% del área total bajo toda la curva, que siempre será 1 para cualquier variable aleatoria.

En efecto, podemos hacer una analogía entre "probabilidad" y "área bajo la curva de densidad" que nos permitirá fácilmente calcular probabilidades respecto a cualquier variable aleatoria contínua.  Esto es algo así como el equivalente probabilístico de los diagramas de Venn en teoría de conjuntos.  Siempre ha de recordarse que para cualquier función de densidad, el aŕea total bajo la curva en todo el rango de la variable es 1.  La función de densidad nos indíca como se distribuye la probabilidad total de 1 a través de todo el rango de valores de la variable.

Explotando esta analogía, les propongo a continuación una técnica visual para facilitar el cálculo de probabilidades que he llamado "ecuaciones con dibujitos".  Supóngase por ejemplo que queremos calcular P(X>4) para una variable X exponencialmente distribuida.  Revisando la fórmula 55, notamos que solo nos permite calcular probabilidades de tipo P(X<x), y nosotros necesitamos que la desigualdad sea al contrario (P(X>4)).  Sin embargo, podemos utilizar la fórmula 55 si nos damos cuenta que P(X<4) es el área bajo la curva exponencial desde 0 hasta 4.  Teniendo en cuenta que P(X>4) es el área bajo la curva exponencial desde 4 hasta infiníto, y que ambas áreas suman a 1, tenemos la siguiente ecuación de dibujitos:

Esta ecuación de dibujitos se interpreta como sigue: "para calcular P(X>4), tenemos que restarle el área (sombreada) bajo la curva a la izquierda de 4 al área total bajo la curva exponencial, que es igual a uno".  De este modo, la ecuación de dibujitos nos sugiere como calcular P(X>4) a partir del valor de P(X<4) que podemos calcular a partir de la fórmula de la función de distribución de probabilidad acumulada.

Proponemos otro ejemplo de cálculo de probabilidades referente a una distribución uniforme entre 10 y 20.  Supóngase que esta vez estamos interesados en calcular P(12<X<16). Puesto que la fòrmula 49 de la función de distribución de probabilidad uniforme sólo nos permite calcular probabilidades de tipo P(X<x), o equivalentemente, areas bajo la curva de densidad uniforme ubicadas a la izquierda de la distribución, podemos plantear una ecuación de dibujitos que nos permita orientarnos en el cálculo:

Así, para este ejemplo, P(12<X<16)=P(X<16)-P(X<12)=0.6-0.2=0.4.  En resúmen, podemos plantear cualquier cálculo de probabilidades respecto a variables contínuas como un cálculo con sumas y restas de áreas (sombreadas) bajo la curva.

Para las variables normálmente distribuidas no se dá explícitamente la fórmula de la función de distribución de probabilidad acumulada F(x), puesto que para el caso de la normal, la función de densidad f(x) no tiene primitiva (no es posible calcular su integral indefinida analíticamente).  Por esta razón, el cálculo de probabilidades para la distribución normal involucra el uso de tablas, donde se encuentran tabulados los valores F(x) para distintos valores de x.  El cálculo de probabilidades normales será abordado en una entrada futura en este blog.  Como se verá, las ecuaciones de dibujitos son particularmente útiles en ese contexto también.

Mientras tanto, volvemos sobre el tema de la moda en el contexto de las variables aleatorias continuas.  En los trabajos prácticos de la asignatura 745, muchos de ustedes utilizan la función MODA de Excel para calcular la moda de una muestra para datos no agrupados.  Generalmente, esta función en Excel arroja "#NA" como respuesta, lo cual se interpreta como "no disponible".  De ahí, muchos estudiantes infieren erroneamente que la variable en cuestión no tiene moda, o que la moda no existe para esta variable.  Esto es desde luego un error, pues toda variable aleatoria tiene por lo menos un valor modal (en el caso de la uniforme, todos sus valores son modales).  ¿Porqué Excel no puede calcular la moda para algunas variables?

Veamos la cuestión un poco más a fondo.  La función MODA de Excel simplemente devuelve el valor que más se repite entre un conjunto de valores.  Cuando ningún valor se repite, la función MODA devuelve "#NA".  Esto no significa que la variable en cuestión no tenga moda, simplemente nos indica que ningún valor de la muestra se repite.  El problema es que cási siempre, cuando trabajamos con poblaciones con distribuciones de probabilidad contínuas, ningún valor de la muestra se repite y si esto sucede, es debido a errores de medición o truncamiento decimal.

La razón por la cual ningún valor se repite en una muestra proveniente de una población con distribución continua tiene que ver con el hecho que para toda variable aleatoria continua, cualquier probabilidad puntual de tipo P(X=x) es necesariamente igual a cero.  Para visualizar intuitivamente este hecho, planteamos el cálculo de una probabilidad puntual mediante una ecuación de dibujitos:


El ejemplo de arriba está referido al cálculo de P(X=100) para una variable aleatoria normal con media igual a 100.  Como el resultado de la resta de las dos areas sombreadas es el área equivalente a la superficie de un segmento de recta - y puesto que los segmentos de recta tienen área nula (la recta es un área infinitamente delgada) - se puede ver que la probabilidad P(X=100) es necesariamente igual a cero ¡aún cuando paradójicamente, la media de la variable es igual a 100!

Para las variables aleatorias continuas, no se puede calcular la moda como "aquel valor que más se repite", puesto que todas las probabilidades puntuales son iguales a cero. Por lo tanto, la función MODA de Excel no puede calcular el valor modal para este tipo de variables ¿Qué hacer entonces?

Primeramente, para el caso de las variables continuas, la definición de la moda como el "valor con mayor frecuencia asociada" no es del todo correcta, o es correcta sólo en parte.  Para estas variables, la moda es aquel valor con mayor densidad de probabilidad asociado y debemos tener presente que "densidad de probabilidad" no es lo mismo que "probabilidad".  Para calcular la moda muestral en tales casos, sería necesario estimar esta función de densidad de probabilidad en base a la muestra (lo que se conoce como el kernel o núcleo de densidad) y determinar el punto para el cual esta densidad se hace máxima.  Y esto, claramente, es algo que no hace el Excel.  Por lo tanto, la alternativa sería usar un programa para estadísticas "de verdad".

En R, usando mi librería estUNA, esto es bastante fácil de hacer.  Por ejemplo, si queremos calcular la moda de la variable X2 cuyo histograma es el de la figura 2 arriba, esto se haría mediante el comando resumen(X2), cuya salida devuelve toda clase de medidas estadísticas de la variable X2, incluyendo la moda de dicha variable, o utilizar el comando moda(X2), que devuelve sólamente la moda.  Para esta variable en partícular, la moda es de 7,323183, lo cual se indica mediante la línea vertical roja en el histograma de la figura 2.

Si te gustó o te pareció útil este contenido, compártelo en las redes sociales y dale tu voto positivo en el botón "me gusta" de G+, para que otros puedan encontrar el contenido también.